Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Transbound Emerg Dis ; 69(5): e1338-e1349, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2052987

ABSTRACT

Equine Piroplasmosis (EP) is a tick-borne disease caused by three apicomplexan protozoan parasites, Theileria equi (T. equi), Babesia caballi (B. caballi) and T. haneyi, which can cause similar clinical symptoms. There are five known 18S rRNA genotypes of T. equi group (including T. haneyi) and three of B. caballi. Real-time PCR methods for detecting EP based on 18S rRNA analysis have been developed, but these methods cannot detect all genotypes of EP in China, especially genotype A of T. equi. In this study, a duplex real-time PCR detection method was developed for the simultaneous detection and differentiation of T. equi and B. caballi. The primers and probes for this duplex real-time PCR assay were designed based on the conserved 18S rRNA gene sequences of all genotypes of T. equi and B. caballi including Chinese strain. Double-quenched probes were used in this method, which provide less background and more signal to decrease the number of false positives relative to single-quenched probes. The newly developed real-time PCR assays exhibited good specificity, sensitivity, repeatability and reproducibility. The real-time PCR assays were further validated by comparison with a nested PCR assay and a previous developed real-time PCR for EP and sequencing results in the analysis of 506 clinical samples collected from 2019 to 2020 in eleven provinces and regions of China. Based on clinical performance, the agreements between the duplex real-time PCR assay and the nPCR assay or the previous developed real-time PCR assay were 92.5% (T. equi) and 99.4% (B. caballi) or 87.4% (T. equi) and 97.2% (B. caballi). The detection results showed that the positivity rate of T. equi was 43.87% (222/506) (10 genotype A, 1 genotype B, 4 genotype C, 207 genotype E), while that of B. caballi was 5.10% (26/506) (26 genotype A), and the rate of T. equi and B. caballi co-infection was 2.40% (12/506). The established method could contribute to the accurate diagnosis, pathogenic surveillance and epidemiological investigation of T. equi and B. caballi infections in horses.


Subject(s)
Babesia , Babesiosis , Cattle Diseases , Horse Diseases , Theileria , Theileriasis , Animals , Babesia/genetics , Babesiosis/diagnosis , Babesiosis/epidemiology , Babesiosis/parasitology , Cattle , Horse Diseases/diagnosis , Horse Diseases/epidemiology , Horse Diseases/parasitology , Horses , RNA, Ribosomal, 18S/genetics , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/veterinary , Reproducibility of Results , Theileria/genetics , Theileriasis/diagnosis , Theileriasis/epidemiology , Theileriasis/parasitology
2.
Vet Parasitol Reg Stud Reports ; 33: 100753, 2022 08.
Article in English | MEDLINE | ID: covidwho-1984223

ABSTRACT

Tick-borne pathogens (TBPs) pose an increased health and productivity risk to livestock in sub-Saharan Africa. Information regarding TBPs infecting small ruminants in Kano metropolis is scarce. Therefore, we investigated the molecular epidemiology of tick-borne pathogens of economic importance from sheep and goats in Kano, Nigeria using Polymerase chain reaction (PCR). A total of 346 blood DNA samples were collected from small ruminants and analyzed for TBPs using PCR and sequencing. Risk of infection was determined for age, sex, breed and animal species. Our results indicate the absence of piroplasmids (Babesia/Theileria) and Rickettsia spp. infections. The overall prevalence for Anaplasma spp. was 9.25% (32/346) with a higher prevalence in goats 13.59% (25/184) compared with sheep 4.32% (7/162). With respect to age of animals, goats >4 years had the highest prevalence of 32.45% (11/37) which differs significantly (P = 0.0059) compared with other age categories. Cross breed goats had a prevalence of 15.63% (5/32) compared with Kano brown breed 14.08 (20/142). Sex significant difference (P = 0.029) was observed in the goats with females having the highest prevalence 20.89% (14/67) compared with males 9.40% (11/117). Furthermore, with regards to sheep, no significant difference (P > 0.05) was observed with respect to age and breed. Finally, no significant difference (P > 0.05) was observed with the prevalence of Anaplasma spp. due to Body condition score (BCS) in both sheep and goats. Conclusively, the occurrence of TBPs in small ruminants is low. Continuous efforts in tick control must be sustained to ensure high productive yield and reduced disease burden associated with TBPs of sheep and goats in Kano metropolis.


Subject(s)
Goat Diseases , Rickettsia Infections , Theileria , Ticks , Anaplasma/genetics , Animals , Female , Goat Diseases/epidemiology , Goats/microbiology , Male , Nigeria/epidemiology , Rickettsia Infections/epidemiology , Rickettsia Infections/veterinary , Risk Factors , Ruminants , Sheep , Theileria/genetics , Ticks/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL